63 research outputs found

    Genotoxicity of radiofrequency electromagnetic fields: Protocol for a systematic review of in vitro studies.

    Get PDF
    Abstract Background Exposure to radiofrequency electromagnetic fields (RF-EMF, 100 kHz – 300 GHz) emitted by wireless communication technologies is pervasive and ubiquitous. Concern has been raised about possible adverse effects to human health. In 2011 the International Agency for Research on Cancer has classified RF-EMF as possibly carcinogenic to humans, highlighting that the evidence is weak and far from conclusive. Updated systematic reviews of the scientific literature on this topic are lacking, especially for mechanistic studies. Objectives To develop a protocol for a systematic review of experimental studies investigating genotoxic effects induced by RF-EMF in in vitro cellular models. Genotoxicity is one of the key-biological indicators of carcinogenicity, and the most common characteristics of established carcinogens. The predefined procedures for conducting the systematic review are outlined below. Methods We will follow the guidelines developed by the National Toxicology Program-Office of Health Assessment and Translation (NTP-OHAT), adapted to the evaluation of in vitro studies. Eligibility criteria We will include experimental in vitro studies addressing the relationship between controlled exposures to RF-EMF and genotoxicity in mammalian cells only. Eligibility for inclusion will be further restricted to peer reviewed articles reporting findings from primary studies. Information sources We will search the scientific literature databases NCBI PubMed, Web of Science, and EMF-Portal. No filter on publication date will be applied. Only studies published in English will be considered. The reference lists of the included papers and available reviews will be screened for unidentified relevant papers. References will be managed through Endnote X9 software. Data extraction and synthesis of results Data from included papers will be extracted according to predefined forms. Heterogeneity within the available evidence will determine the type of evidence synthesis that is appropriate. Findings will be summarized in tables, graphical displays and in a narrative synthesis of the available evidences. A meta-analysis will be carried out if subgroups of studies homogeneous in terms of exposure characteristics, endpoint, and cell types will be identified. Risk of bias The internal validity of included studies will be assessed using the NTP-OHAT Risk of Bias Rating Tool for animal studies, adapted to in vitro studies. This stage of the process will be managed through the Health Assessment Workspace Collaborative (HAWC). Evidence appraisal To rate confidence in the body of evidence, we will use the OHAT GRADE-based approach for animal studies. Framework and funding This protocol concerns one of the evidence streams considered in a larger systematic review of the scientific literature on the potential carcinogenicity of RF-EMF, performed by scientists from several Italian public research agencies. The project is supported by the Italian Workers' Compensation Authority (INAIL) in the framework of the CRA with the Istituto Superiore di Sanita "BRiC 2018/06 – Scientific evidence on the carcinogenicity of radiofrequency electromagnetic fields"

    ESOPE-Equivalent Pulsing Protocols for Calcium Electroporation: An In Vitro Optimization Study on 2 Cancer Cell Models

    Get PDF
    Reversible electroporation is used to increase the uptake of chemotherapeutic drugs in local tumor treatment (electrochemotherapy) by applying the pulsing protocol (8 rectangular pulses, 1000 V/cm, 100 µs) standardized in the framework of the European Standard Operating Procedure on Electrochemotherapy multicenter trial. Currently, new electrochemotherapy strategies are under development to extend its applicability to tumors with different histology. Electrical parameters and drug type are critical factors. A possible approach is to test pulse parameters different from European Standard Operating Procedure on Electrochemotherapy but with comparable electroporation yield (European Standard Operating Procedure on Electrochemotherapy-equivalent protocols). Moreover, the use of non-toxic drugs combined with electroporation represents the new frontier for electrochemotherapy applications; calcium electroporation has been recently proposed as a simple tool for anticancer therapy. In vitro investigations facilitate the optimization of electrical parameters and drugs for in vivo and clinical testing. In this optimization study, new pulsing protocols have been tested by increasing the pulse number and reducing the electric field with respect to the standard. European Standard Operating Procedure on Electrochemotherapy-equivalent protocols have been identified in HL-60 and A431 cancer cell models, and a higher sensitivity in terms of electroporation yield has been recorded in HL-60 cells. Moreover, cell killing efficacy of European Standard Operating Procedure on Electrochemotherapy-equivalent protocols has been demonstrated in the presence of increasing calcium concentrations on both cell lines. Equivalent European Standard Operating Procedure on Electrochemotherapy protocols can be used to optimize the therapeutic effects in the clinic, where different regions of the same cancer tissue, with different electrical properties, might result in a differential electroporation yield of the standard protocol over the same tissue, or, eventually, in an override of the operational limits of the instrument. Moreover, using calcium can help overcome the drawbacks of standard drugs (side effects, high costs, difficult handling, preparation, and storage procedures). These results support the possibility of new treatment options in both standard electrochemotherapy and calcium electroporation, with clear advantages in the clinic

    Encadeamento produtivo, localização e associação geográfica da agroindústria canavieira no Paraná

    Get PDF
    O objetivo deste estudo foi analisar a localização, a atração e a associação geográfica dos ramos de atividades da agroindústria canavieira com os outros ramos de atividades produtivas da Região Norte do Paraná, entre os anos de 1995 e 2005. Para tanto, a variável utilizada foi o emprego formal e, para a análise dos dados, medidas de localização. No cômputo geral, a localização e a associação geográfica da agroindústria canavieira na Região Norte do Paraná são capazes de gerar encadeamentos e estimular o processo de crescimento e desenvolvimento econômico regional quando se constata que a agroindústria canavieira possui um quociente locacional maior ou igual a um e, portanto, é uma das especializações que estimula uma maior oferta de empregos formais na mesorregião Noroeste Paranaense. Conclui-se que as mesorregiões Noroeste Paranaense, Norte Central e Norte Pioneiro mantêm uma associação com a agroindústria canavieira, mostrando a forte relação desta Região com a atividade supracitada

    DNA Electrophoretic Migration Patterns Change after Exposure of Jurkat Cells to a Single Intense Nanosecond Electric Pulse

    Get PDF
    Intense nanosecond pulsed electric fields (nsPEFs) interact with cellular membranes and intracellular structures. Investigating how cells respond to nanosecond pulses is essential for a) development of biomedical applications of nsPEFs, including cancer therapy, and b) better understanding of the mechanisms underlying such bioelectrical effects. In this work, we explored relatively mild exposure conditions to provide insight into weak, reversible effects, laying a foundation for a better understanding of the interaction mechanisms and kinetics underlying nsPEF bio-effects. In particular, we report changes in the nucleus of Jurkat cells (human lymphoblastoid T cells) exposed to single pulses of 60 ns duration and 1.0, 1.5 and 2.5 MV/m amplitudes, which do not affect cell growth and viability. A dose-dependent reduction in alkaline comet-assayed DNA migration is observed immediately after nsPEF exposure, accompanied by permeabilization of the plasma membrane (YO-PRO-1 uptake). Comet assay profiles return to normal within 60 minutes after pulse delivery at the highest pulse amplitude tested, indicating that our exposure protocol affects the nucleus, modifying DNA electrophoretic migration patterns

    Cytotoxicity Investigation on Cultured Human Blood Cells Treated with Single-Wall Carbon Nanotubes

    No full text
    The single-wall carbon nanotubes (SWCNTs) are one of the new materials ofemerging technologies. They are becoming increasingly studied for the possibleapplications in electronics, optics and biology. In particular, very promising fields ofapplication are the development of optical biosensors and the intracellular drug delivery.Nevertheless, there is a paucity of information on their toxicological properties and onpotential human health risk. In the present study the SWCNTs were investigated for thepossible induction of toxicity in human blood cells. Cell growth, viability, apoptosis andmetabolic activity were evaluated in proliferating human peripheral blood lymphocytes. Inun-stimulated human leukocytes primary DNA damage was also evaluated. SWCNTsconcentrations ranging from 1 to 50 μg/ml were tested, and treatment duration varied from6 to 72 h, in accordance with the biological target investigated. A statistically significantdecrease in cell growth was found in cells treated with the highest concentrations (25 and50 μg/ml). Such decrease was not associated to cell death or apoptosis, but it wasdemonstrated to be related to a decrease in metabolic activity, as assessed by resazurinassay. Moreover, treatments of 6 h with SWCNTs concentrations of 1, 5 and 10 μg/mlfailed to induce primary DNA damage on the entire human leukocytes population

    Effetti genotossici delle microonde e di alcuni pesticidi sui linfociti bovini coltivati in vitro

    No full text
    Dottorato di ricerca in scienze zootecniche. 8. ciclo. Tutore M. B. Lioi. Coordinatore P. MasinaConsiglio Nazionale delle Ricerche - Biblioteca Centrale - P.le Aldo Moro, 7, Rome; Biblioteca Nazionale Centrale - P.za Cavalleggeri, 1, Florence / CNR - Consiglio Nazionale delle RichercheSIGLEITItal

    The Role of Pulse Repetition Rate in nsPEF-Induced Electroporation: A Biological and Numerical Investigation

    No full text
    The impact of pulse repetition rate (PRR) in modulating electroporation (EP) induced by nanosecond pulsed electric fields (nsPEFs) in mammalian cells was approached here by performing both biological and numerical analysis. Plasma membrane permeabilization and viability of Jurkat cells were analyzed after exposure to 500, 1.3 MV/m, 40 ns PEFs with variable PRR (2-30 Hz). A finite-element model was used to investigate EP dynamics in a single cell under the same pulsing conditions, by looking at the time course of transmembrane voltage and pore density on the ns time scale. The biological observations showed an increased EP and reduced viability of the exposed cells at lower PRR in the considered range. The numerical analysis resulted in different dynamics of plasma membrane response when ns pulses were delivered with different PRR, consistently with a phenomenon of electrodesensitization recently hypothesized by another research group
    • …
    corecore